Rester « jeune » , très simple : gavez-vous de glycine (acide amino-acétique) !

Capture d’écran 2015-05-28 à 16.31.59

La quête de l’éternité n’en finit pas de préoccuper les scientifiques et c’est bien normal car celui qui trouvera le moyen de prévenir le vieillissement inexorable de notre corps aura touché le gros jackpot. Les travaux vont un peu dans toutes les directions et c’est bien normal aussi car les causes du vieillissement sont multiples. On a identifié le raccourcissement des télomères, ces petits morceaux d’ADN qui se trouvent à chaque extrémité des chromosomes, un peu comme les ficelles au bout d’un bon saucisson à cuire de la bonne ville de Lyon. On a accusé l’augmentation d’espèces chimiques oxydées contribuant à endommager les membranes cellulaires avec un déficit en équipement enzymatique permettant de les éliminer qui apparaît avec la vieillesse. On a également identifié une autre cause précipitant la mort des cellules, un affaiblissement de la capacité des mitochondries, ces petites centrales électriques de la cellule, à fournir de l’énergie aux cellules. Enfin, on a accusé l’accumulation de mutations au cours de la vie, c’est-à-dire au cours du renouvellement de notre stock de cellules, mutations agissant dans tous les sens, y compris vers l’apparition de cancers.

Pour tenter d’élucider l’énigme du vieillissement une équipe de biologistes de l’Université de Tsukuba à Ibaraki au Japon en liaison avec l’Institut RIKEN de la même ville a choisi une méthode différentielle astucieuse pour faire ressortir les différences entre des cellules « jeunes » et des cellules « vieilles ». Il s’est agit d’étudier des lignées de fibroblastes établies à partir de jeunes sujets, y compris des fœtus, et de « vieux » sujets de 80 ans et plus. Le métabolisme énergétique général de huit lignées, 4 de chaque sorte, a été étudié en suivant la consommation d’oxygène des cellules car qui dit production d’énergie sous-entend consommation d’oxygène et dégagement de CO2. Dans les cellules de notre corps, ça marche comme dans une centrale électrique à charbon ou à gaz, un combustible comme du glucose est littéralement brûlé pour produire de l’ATP (adénosine-triphosphate) qui servira aux besoins en énergie de la cellule avec dégagement de CO2, celui-là même que l’on rejette en respirant.

D’emblée les premières données ont été formelles : les « vieilles » cellules respirent beaucoup moins bien que leurs copines « jeunes », en d’autres termes elle consomment moins d’oxygène et par voie de conséquence elle vont finir par mourir par manque d’énergie avec toutes les conséquences que cette situation suppose. Que s’est-il donc passé dans la cellule pour en arriver à ce résultat ? L’équipe dirigée par le Docteur Jun-Ichi Hayashi, a cherché à identifier des différences dans les mutations de l’ADN des mitochondries affectant en particulier le système impliqué dans la détoxification et la neutralisation des espèces chimiques oxydées, mais ce fut un coup d’épée dans l’eau : pas de différence notoire entre les « jeunes » et les « vieux », je parle bien sûr des fibroblastes en culture.

L’idée inattendue du Docteur Hayashi fut de reprogrammer ces fibroblastes, en réalité de vulgaires cellules de la peau, en cellules souches multipotentes. On sait le faire une introduisant des signaux dans la cellule à l’aide de virus porteurs de gènes qui réorientent les cellules, même âgées, en cellules embryonnaires. L’hypothèse était que si on programmait ensuite ces cellules multipotentes pour qu’elles redeviennent des fibroblastes (on sait le faire aussi) elles devraient soit avoir gardé en mémoire leur « vieillesse » soit s’être refait une santé par ce processus. Si tel était le cas, il suffirait alors d’identifier les gènes (et l’expression de ces derniers) impliqués dans un tel artifice expérimental de rajeunissement pour avancer dans la compréhension du processus de vieillissement. Et le résultat de cette approche n’a pas du tout été celui qu’on attendait.

D’abord le vieillissement ne provient pas d’un défaut (mutations) du matériel génétique propre aux mitochondries – ces petites entités sub-cellulaires possèdent en effet un ADN spécial différent de celui du noyau cellulaire – mais bien de mutations apparues dans l’ADN du noyau cellulaire. L’identification par différence des gènes moins bien exprimés dans les « vieilles » cellules a montré que la perturbation la plus spectaculaire se situait au niveau de deux activités enzymatiques régulant la production d’un aminoacide dans la mitochondrie et pas n’importe lequel puisqu’il s’agit du membre le plus simple de cette famille de molécules essentielles à la vie, la glycine. Rien à voir avec l’arbuste grimpant du même nom et pour les aficionados de la chimie ça s’écrit NH2-CH2-COOH et ça s’appelle aussi acide amino-acétique.

Cet aminoacide est impliqué dans de nombreux processus métaboliques et si sa synthèse continue vient à décliner en raison d’une déficience de l’expression de deux des enzymes clés impliqués dans cette synthèse, alors la cellule n’a plus qu’une seule issue, mourir faute d’énergie. Ces enzymes sont codés par l’ADN du noyau et le vieillissement des mitochondries ne provient donc pas de l’ADN mitochondrial mais bien de modifications de celui du noyau cellulaire. Ces gènes ont été identifiés par un artifice expérimental consistant à mesurer le niveau d’expression de ces derniers à un instant donné et en analysant les différences d’expression entre les fibroblastes « jeunes » et les fibroblastes « vieux ». Ce ne fut pas une partie de plaisir puisque le travail consista à examiner l’expression de 27958 gènes nucléaires à l’aide de microarray (bio-puces en français, http://en.wikipedia.org/wiki/DNA_microarray  )!

Bref, il fallait une preuve ultime de l’implication de ces activités enzymatiques dans le vieillissement des mitochondries et ce fut très simple : réduire au silence l’expression des deux gènes identifiés, une manipulation maintenant communément utilisée en biologie moléculaire. L’équipe du Docteur Hayashi put ainsi faire vieillir prématurément des fibroblastes pourtant issus de fœtus ou de très jeunes enfants. Et si on donnait de la glycine à « manger » à ces fibroblastes dont ces gènes avaient été rendus silencieux ils finissaient par s’habituer et rester « jeunes ».

Conclusion, gavez-vous de glycine, ça ne coûte pas cher, dans les 5 dollars le kilo, c’est disponible sur internet et ce n’est pas toxique ! Pour une fois, une recherche très sophistiquée débouche sur une lueur d’espoir que n’importe qui peut partager. J’avoue que je suis moi-même surpris par le résultat final de ces travaux de grande qualité publiés dans Nature et disponibles pour les curieux ici : http://www.nature.com/srep/2015/150522/srep10434/full/srep10434.html#ref18 .

Source : http://www.tsukuba.ac.jp/english/

Illustration : Noriben, un met japonais traditionnel qui est ici une présentation artistique de l’onigiri, boulette de riz entourée d’algues séchées en feuilles minces. Ici le Noriben posé sur du riz schématise la structure d’une mitochondrie (crédit : Dr Hayashi).

Note : j’ajouterai pour mes lecteurs insomniaques que la glycine (3 grammes le soir) améliore la qualité du sommeil : http://onlinelibrary.wiley.com/doi/10.1111/j.1479-8425.2007.00262.x/abstract;jsessionid=075D6269E8ED724B9E9410A52D4603D2.f02t01 et j’avoue aussi que je suis tenté d’essayer pour mieux dormir surtout si en prime je peux rester « jeune ». 

Un génome : 400 sortes de cellules ! Comment ça marche ?

Notre organisme est constitué d’environ 400 types de cellules différentes et pourtant elles possèdent toute la même information génétique qui se trouve répartie dans les 23 chromosomes. Cette information codée dans l’ADN correspond à environ 50000 gènes codant pour 50000 protéines différentes couvrant une large panoplie de fonctions, que ce soient des enzymes, des protéines de structure ou de régulation. La classe la plus abondante de ces protéines est formée par les facteurs de transcription qui ont pour rôle de se fixer sur l’ADN et de contrôler sa transcription en ARN messager. L’ARN messager sert alors de guide à une machinerie enzymatique complexe, les ribosomes, qui est en charge de synthétiser les protéines. On peut faire une comparaison avec un télex, ça n’existe plus depuis le développement d’internet mais son fonctionnement aide à comprendre comment les choses se passent dans la cellule. On commençait à écrire un texte avec une machine à écrire, ce serait l’ARN polymérase (l’enzyme qui copie le code génétique de l’ADN pour le transformer en ARN) qui éditait une bande perforée, dans notre comparaison l’ARN dit messager, et celle-ci était ensuite introduite dans le télex qui la lisait et la traduisait en document, pour nous ici la protéine. Pour être complet dans cette comparaison, le rôle de l’ADN est matérialisé par l’opérateur qui possède l’information sur le texte qu’il compose sur le clavier de la machine à perforer la bande comme l’ADN possède les informations génétiques.

Pour que la même information génétique conduise à au moins 400 cellules de types différents dans l’organisme il faut donc qu’un mécanisme de régulation très précis fonctionne et module finement l’expression de ces quelques 50000 gènes et c’est le rôle de ces facteurs de transcription dont on a décrit environ 2500 variétés, soit 5 % de l’ensemble des gènes exprimés de tout l’ADN. C’est loin d’être négligeable et il faut tout cet attirail de clés et de serrures, en quelque sorte, pour qu’une cellule devienne un neurone, un globule blanc, une cellule cardiaque, un cône ou un bâtonnet de la rétine ou une cellule capable de produire un cheveu.

Depuis le début des années 2000 le Riken Institute à Yokohama, dans le sud de l’agglomération de Tokyo, s’est intéressé à l’expression des ARN qu’on appelle messagers (la bande perforée du télex) et le projet appelé FANTOM que cet institut a créé et mis en place englobe maintenant plus de 250 personnes réparties dans 114 laboratoires de 20 pays de par le monde.

Capture d’écran 2014-03-27 à 12.52.50

En appliquant une technique (CAP, voir la figure) mise au point au Riken Institute consistant à repérer l’ARN messager au début de sa synthèse et avec des machines automatiques de séquençage devenues au fil des années extrêmement performantes, précises et rapides, les résultats se sont accumulés et ont permis de se faire une bonne idée de la différenciation cellulaire. Pour bien comprendre comment les choses se passent, il faut garder en mémoire le schéma ci-dessous (Wikipedia) où figurent des portions de séquence de l’ADN particulières situées en amont du gène qui va être transcrit par l’ARN polymérase.

1600px-Transcription_Factors.svg

Il y a les protomères reconnus par les facteurs de transcription et sur lesquels ces derniers se fixent et il y a aussi les séquences d’ADN dites activateurs (enhancers) sur lesquelles vont se fixer les protéines activatrices qui forment un complexe avec les facteurs de transcription pour décider au final si l’ARN polymérase peut fonctionner ou non, c’est-à-dire générer l’ARN messager qui conduira à la protéine correspondant au gène. Le projet FANTOM coordonné par le Riken Institute a répertorié pas moins de 180000 séquences de protomères et 44000 séquences d’activateurs. Ca fait beaucoup mais il faut tout cet attirail pour que la régulation de l’expression des gènes puisse conduire à la différenciation cellulaire telle qu’on peut l’observer.

On peut faire une estimation arithmétique rapide mais cependant éloignée de la réalité, chaque gène serait sous le contrôle de près de 4 protomères différents et les quelques 2500 facteurs de transcription, agissant chacun sur 20 gènes différents (50000/2500), permettraient donc une combinaison d’environ 500 possibilités, en gros le nombre de cellules différentes décrites : (2500×4)/20. Naturellement, c’est une estimation de mon cru en appliquant une statistique grossière qui ferait hurler d’horreur n’importe quel coauteur de cette étude mais ce qui n’est pas difficile à comprendre c’est que la moindre erreur et c’est la pagaille assurée, par exemple une cellule qui devient cancéreuse. Toute l’étude a d’ailleurs été réalisée initialement avec des cellules saines mais les cellules cancéreuses n’ont pas été non plus négligées.

Le Docteur Alister Forrest, coordinateur scientifique du projet dit les choses ainsi et je n’ai fait que reprendre ses propos : « Les êtres humains sont des organismes multicellulaires complexes composées d’au moins 400 types cellulaires distincts. Cette belle diversité de types de cellules nous permet de voir, de penser, d’entendre, de se déplacer et de combattre les infections alors que tout cela est codé dans le même génome. La différence entre toutes les cellules provient des parties du génome qu’elles utilisent – par exemple, les cellules du cerveau utilisent des gènes différents de ceux des cellules du foie, et donc ils travaillent très différemment. Dans FANTOM5, on a pour la première fois systématiquement étudié exactement quels gènes sont utilisés dans presque tous les types de cellules à travers le corps humain, et les régions qui déterminent cette utilisation lorsque les gènes sont lus à partir du génome ».

Cette immense somme de travail a fait l’objet d’une salve d’articles publiés ce 27 mars 2014 qui décrivent en détail comment, entre autres exemples les mastocytes, des cellules de la lignées sanguine, se différencient en dehors de la moelle osseuse d’où elles proviennent pour remplir leurs fonctions protectrices une fois qu’elle ont ciblé l’organe vers lequel elles doivent intervenir et pourquoi elles sont différentes des globules blancs dits basophiles. Cette sorte d’exception était encore mystérieuse il y a à peine deux ans.

Capture d’écran 2014-03-27 à 19.38.38

L’illustration ci-dessus tirée de l’article de Nature (voir le lien et les notes en fin de billet) montre la complexité de ce mécanisme de régulation mais il est intéressant de noter, ce qui n’est pas apparent dans cette figure, que les gènes essentiels à la vie de la cellule, ce que les biologistes appellent les gènes « housekeeping », un terme pas très facile à traduire en français mais qui signifie que sans l’expression de ces gènes la cellule ne peut pas vivre, les promoteurs de ces gènes sont hautement conservés dans tous les types de cellules. Pour les autres gènes, les sites de début de transcription sont des entités composites dont la diversité est matérialisée par le diamètre des petites sphères dans l’illustration. Pas surprenant que les cellules du testicule qui doivent exprimer pratiquement tous les gènes pour produire les gamètes mâles disposent d’une panoplie étendue de promoteurs, pas surprenant non plus que les hépatocytes, les cellules du foie, qui sont multitâches, jouissent d’une plus grande flexibilité pour exprimer toutes sortes d’enzymes indispensables à leurs fonctions métaboliques ou de détoxification. Par contre les cellules épithéliales sont hautement spécialisées et la diversité des promoteurs est faible. Belle illustration de la complexité du vivant et la recherche en génétique réserve encore de nombreuses surprises en particulier en affinant les mécanismes d’apparition des cellules cancéreuses probablement grâce à ce type d’approche comme cela est suggéré dans l’illustration.

Sources : Riken Institute News et Nature (doi:10.1038/nature13182)

Illustrations : Wikipedia et Nature.

Note : l’illustration tirée de Nature (capture d’écran) a été insérée dans ce billet sans l’autorisation des éditeurs mais comme mon blog n’a pas de vocation commerciale, il n’y figure notamment aucune publicité, je suppose que ces éditeurs n’en seront pas offusqués. FANTOM5 est le cinquième rapport du projet Fonctional ANnoTation Of the Mammalian genome promu et dirigé par le Riken Institute. A noter qu’aucun laboratoire français n’a participé à cette étude multinationale extraordinairement innovante.

Le contrôle de la bonne humeur dans le cerveau …

Quand je me hasarde sur mon blog à des commentaires politiques, climatiques ou économiques, je me rends compte en réalité que ce n’est pas vraiment mon domaine de prédilection mais il m’arrive parfois d’avoir une envie irrésistible de cracher mon venin en lisant, atterré, que la France est maintenant sur une pente descendante qui va donner le vertige à bien des insouciants faisant le plein de soleil sur les plages ou à la campagne car il faudra payer les impôts à la rentrée, c’est promis, et pour beaucoup ce sera douloureux, très douloureux, surtout pour ceux qui n’ont jamais été habitués à faire un chèque à la Trésorerie du coin, quelques millions de nouveaux contribuables paraît-il, bref, ils vont sentir passer leur douleur et leur cerveau en sera tout tourneboulé. Et pourtant, le cerveau, cet organe dont on découvre jour après jour les mécanismes intimes de fonctionnement nous réserve encore des surprises, et pour encore des années. Si l’emprise des évènements sur l’humeur d’un individu est réelle, en fait tout est affaire de chimie dans le cerveau. Bien que j’aie nullement envie d’ennuyer mes lecteurs avec ces quelques rappels de chimie du cerveau, ils sont néanmoins utiles pour la bonne compréhension de la suite de mon exposé. Il y a dans le cerveau trois neurotransmetteurs associés à la bonne humeur, le stress et la sensation de bien-être : la sérotonine, la norépinéphrine et la dopamine. La sérotonine

200px-Serotonin-2D-skeletal

issue de l’aminoacide essentiel appelé tryptophane est considérée comme contribuant au bien-être ou à la satisfaction, dont la satisfaction « digestive » puisque cette petite molécule (voir la formule) est très active au niveau de l’intestin. Quelle plus grande satisfaction qu’une bonne digestion après un excellent repas ! La seconde substance qui contrôle notre humeur, qu’on le veuille ou non, c’est comme ça car tout est de la chimie, est la norépinéphrine aussi appelée noradrénaline.

180px-Norepinephrine_structure_with_descriptor

Adrénaline ? Ca rappelle quelque chose du genre, se faire du souci, avoir le cœur qui bat trop vite, ou sentir des sueurs froides couler le long du dos. La norépinéphrine est le neurotransmetteur du stress. La norépinéphrine est issue d’un autre aminoacide, la tyrosine mais je n’entrerai pas dans les détails. Reste un troisième neurotransmetteur important, la dopamine.

Dopamine2

La dopamine joue un rôle essentiel dans de nombreuses fonctions cérébrales depuis le contrôle de la locomotion (voir la maladie de Parkinson), la motivation, les mécanismes de la récompense, le plaisir sexuel et même la lactation, j’en ai parlé dans plusieurs précédents billets. Bref, si on examine rapidement les formules chimiques de ces trois neurotransmetteurs, on s’aperçoit qu’ils ont en commun un groupe d’atomes appelé fonction amine (-NH2) et comme il faut aussi que le cerveau gère correctement l’abondance de ces trois composés, il existe un système très efficace qui consiste à détruire tout simplement ces derniers à l’aide d’une activité enzymatique dédiée qu’on appelle la mono-amine oxydase (MAO-A), encore faut-il que cette activité soit optimale sinon l’humeur pourrait changer du tout au tout et on pourrait devenir agressif ou au contraire totalement morose ou encore « parkinsonien » avant l’âge … Le cerveau a mis au point un système très sophistiqué pour réguler la teneur en ces trois neurotransmetteurs en agissant directement sur la MAO-A que l’on vient juste de découvrir au RIKEN Brain Science Institute à Wako dans la préfecture de Saitama au Japon. Je ne voudrais pas fatiguer mes lecteurs par une longue dissertation au sujet de cette découverte car celle-ci est parfaitement illustrée à l’aide des deux schémas reproduits à partir du lien indiqué. Pas assez de MAO-A, l’agressivité devient un trait dominant du comportement, trop de MAO-A on est au contraire anxieux et on a tendance à rechercher une certaine entraide. Ces travaux ont été menés à bien en utilisant des souris dont le gène RING, qui code pour un enzyme participant à la dégradation de la MAO-A (ubiquitin proteasomal system) a été modifié et ces souris sont devenues incapables de moduler la teneur en ce dernier enzyme, précipitant l’apparition de troubles comportementaux sérieux en raison du manque total de contrôle de la teneur respective en ces trois neurotransmetteurs dont il était question plus haut. Peut-être, pour en revenir au début de mon billet, quand certains citoyens recevront leur feuille d’impôts au retour de leurs vacances, tout va se dérégler dans leur cerveau, mais espérons que le calme l’emportera sur l’agressivité …

Aruga

 

MAOA-ubiquitination

http://www.riken.jp/en/